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Abstract—Using Linux shell commands is a challenging 
task for most of the people new to Linux. This paper presents 
the idea of conversion of natural language to equivalent Linux 
shell command. To achieve the conversion we make use of a 
Naive Bayes text classifier. However there could be a case of a 
series of flags and combination of commands. This is handled 
by a sequence of Naive Bayes text classifier. Owing to the 
small amount of data set for every command the performance 
of naive Bayes is equivalent to that of the other discriminative 
classifiers like maximum entropy models. We improve the 
classification accuracy by combining the naive Bayes model 
with linear interpolation for predication of combination of 
multiple commands and flags. 
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I.  INTRODUCTION  

Using Linux command line is one of the difficult parts 
of using Linux for new users. It is difficult to remember 
different commands and all the flags associated with the 
commands. This paper proposes the use of natural language 
to shell syntax conversion. Any English sentence will be 
converted to an equivalent Linux shell command. This 
involves the prediction of a combination of multiple 
commands and flags for a particular English statement. This 
conversion is achieved using a naive Bayes text classifier. 

Here Naive Bayes performs faster than other 
discriminative classifiers like maximum entropy. Also 
because of a small training data set for all commands it is a 
reasonable choice to make use of a naive Bayes model 
instead of discriminative classifier. Example of Linux 
command 

Create a new tar archive 

tar cvf archivename.tar  

Although a naive bayes classifier assumes conditional 
independence among the words in a sentence it performs 
relatively well for a small corpus.We make use of add one 
smoothing to avoid zero probabilities for newly occuring 
words. It works on the principle of maximum likelihood 
estimates.  

When one of the commands is predicted by the 
classifier the next task is to find the combination of that 
command with other commands and also the flags 
associated with that command. This is done by evaluating 
the probability of several other possible combinations that 
can come along with the initially predicted command. For 

example if "find" is one command predicted by the 
classifier , for the sentence "search all the strings in the 
folder  'etc' " , the other possible combination for this 
command could be "grep" or "rm" or "cat" etc .To find this 
we calculate the probability of "find" given "grep" , "find" 
given "rm" and "find" given "cat" and then select the 
highest amongst it. 

The  section 2 of the paper introduces the multinomial naive 
bayes model. Then section 3 of the paper contains the use 
of the text classifier and linear interpolation of features to 
generate sequence of commands and flags .  The section 4 
concludes the paper with future scope and possible 
optimizations. 

II. MODEL OF MULTINOMIAL NAIVE BAYES 

For a sentence s and class c we have by bayes theorem 

 
Maximum a posterior (MAP) is the most likely class 

 
Where 

 
P(s) can be eliminated. P(s) tells us how likely the 

sentence is which will be identical for all classes. 

 
Here we make two assumptions. First assumption is that 

the position of the words does not affect the calculated 
value. Next we assume conditional independence amongst 
the words in a sentence.That means the word probabilites 
P(x|c) are independent given the class c. 
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Here we perform Laplace smoothing to counter the 
problem of zero probabilities for newly occurring words. 

 
The numerator in the equation is the number of times 

word wi came in the data set for class c. The first term in 
the denominator is the total number of words in the class c 
and V represents the total number of words in the 
vocabulary. 

We create data sets for each command and flag 
containing the possible sentences that could be used for 
that class. When an input is provided by the user in the 
form of English sentence, its broken into individual words. 
These words act as an input to the classifier.  These words 
are directly matched with the data sets of each class to 
calculate the probabilities. We then get the first possible 
command for the sentence. 

III. PREDICTING SEQUENCE OF COMMANDS 

A Linux command could be a combination of more than 
one command and flags. To predict the other possible 
combination with the first command we create a list of all 
the possible combinations that can occur with the any given 
command. For example with the command "find" we can 
have combinations with "grep" , "rm", "cat" and other 
possible commands and flags that operate with a file found 
by the "find" command. 

The list for every command contains its possible 
combinations with the command for which the list is made. 
Every entity in the list contains feature words related to that 
particular given command. For example a list for the 
command "find" will contain "grep" as an entity. "grep" 
will have feature words like "search", "find" ,"locate" and 
bigrams like "search word" ,"containing word" , "containing 
string" and also certain trigram combinations for grep. 

To find the next possible combination with the initial 
command we provide the same English sentence as input to 
the classifier. However this time we find the probabilities 
only for those commands present in the list of the initially 
predicted command. The probability of every item in the 
list is multiplied by a confidence value for that entity of the 
list. The feature word of an entity in a list could be a feature 
word of other entities in the list as well. A confidence value 
tells us how likely the feature belongs to an entity as 
compared to the other entities. 

Confidence value of an entity e is given by 

 

Here f subscript i is a binary feature indicating the 
presence or absence of a feature.  Lambda i gives us the 
weight of that feature. When the feature is a part of other 
entities as well we set lambda i equal to the linear 
interpolation of feature over trigram, bigram and unigram 
level. 

The value of lambda i for a trigram feature is calculated 
as follows 

 

Here qml is the maximum likelihood estimate of that 
feature. 

Here 

 

Here we choose m1, m2 ,m3 to maximize 

 

Here c1 is the number of times we found the given 
trigram in the validation data taken out from the data set of 
that class(entity).Thereby calculate the values of m1, m2 ,m3 
for all the trigram features in the class. 

 

We use the same technique for bigram features and use 
only the maximum likelihood estimate for the unigram 
features of a class (entity).This helps us to compensate for 
the assumption of conditional independence in naive Bayes. 

Once the second command is predicted we look for the 
list of newly predicted command and repeat the procedure. 
This time if the confidence value of all the entities in the list 
multiplied by the naive Bayes classifier probability is below 
a threshold, we stop looking for further combinations. 

Once we have the possible commands and flags for a 
sentence we generate permutations of those commands and 
flags. These permutations are matched with predefined 
sequences of possible combinations for those commands 
and flags. If an incorrect output is generated the user may 
enter the right combination which is then added to the 
predefined sequences. 

IV. PREDICTING OBJECTS OF INTEREST IN THE SENTENCE 

Objects are words file name, string name or other words 
that serve as the parameters of the command. The words 
that follow the words like folder, file , string or disk and 
other similar words are the objects of interest in the 
sentence. However the sentences that do not contain such 
words preceding the object it is difficult to predict such 
objects. 
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A solution to this problem is to predict an object on the 
basis of the words preceding and following the object in the 
sentence. That is to find out the bigrams (preceding word, 
object) and (object, following word) in the database of the 
corresponding predicted command.This approach can be 
further enhanced by keeping information about the relation 
between the words. 
For Example consider the sentence: Enlist the contents of 
the directory /applet. 
Here the verb is 'enlist' and the relationship is 'contents of' 
Example 2: Print the files in /etc. 
Here the verb is 'Print" and the relationship is "files in" 
So we keep a database of verbs and their possible 
relationships to predict an object. 
Thereby we build a form of finite automata between verbs 
and relationships. 

V. FUTURE SCOPE 

The system can be extended to include more than two or 
three commands and possibly predict a larger set of flags 
and commands. The accuracy of the system can be 
increased by using word similarity tables increasing the 
classification accuracy. 

Plug-ins can be added to the system to update status on 
social networking sites like twitter. 

The system can be made more extensible to include a 
larger database for new commands. This prototype can be 
made into functional end user system software. 

Voice control can be added to increase the flexibility of 
use for the end user. 

VI. CONCLUSION 

The model of predicting Linux commands from English 
sentence is a prototype which can be extended to operate 
most of the system through natural language. The model 
works effectively for predicting up to two commands. 
Larger sequences are also predicted correctly but with 
comparatively less accuracy. 
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